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GPIl is a science experiment

e Our science team recently was allocated 890 hours for a
three-year survey for 600 target stars

e How do planets form and evolve?
(core accretion vs. disk instability)

e \What are planetary atmospheres
like?

e How do planets migrate”? What is
their dynamical evolution?

Images from Robert Hurt; NASA Spitzer




HR 8799: discovery & the future
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GPI can probe closer and fainter

e Start with the 600 star
target list and known
relevant properties (e.q.
age, distance, brightness)

* For a given planet orbit
and mass, determine the
probability GPI could see
it (depends on orbital
position, observing
conditions, GPI
performance, etc)

Mass (Mjup)

Semi-major axis (AU)

Courtesy of McBride & Macintosh from the GPI Expolanet Survey team 4




GPIl has 4 essential tasks and units

e Remove distortions e Use multi-wavelength
caused by atmospheric A to aid detection and

turbulence provide information
e Suppress diffraction about the planet

from the star that e FiX quasi-static errors
obscures the planet that limit sensitivity

Adaptive Optics «
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APLC improves Lyot design

e Apodization allows more efficient destructive interference,
providing better cancellation in Lyot plane

e Better throughput and angular resolution

e Built by AMNH (PI: Oppenheimer)

— Hard-edge stop Lyot Stop
. . Diameter ~5 A/D
Apodizer transmission

Thanks to R. Soummer for the figure.
See several references, including: Aime et al (2002), Soummer et al (2003) and Soummer (2005)




Cal system measures quasi-static errors

e Calibration system coupled with APLC

e | OWFS uses light from reference arm for low-order modes

e HOWFS is white-light, phase-shiting interferometer using
reference and science light

e Built by JPL (PIl: Wallace)
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Dedicated hyperspectral imager

e | enslet-based Integral Field Spectrograph
R =341080fromYtoK
2.8 x2.8” FoV

® 0.014” per pixel

e Built by UCLA (PI:
Larkin) with U. Montreal
and Immervision

--------

tiea

Optics test images courtesy of U. Montreal;
IFS photo courtesy of UCLA




Designed for high-contrast imaging

e Compared to current general purpose AO systems on 8-m

to 10-m class telescopes, GPI has:

e 10 times the actuator density per pupil area (18 cm spacing instead of 56-60
cm)

¢ < 5 nm uncalibrated non-common path error

e a spatially filtered wavefront sensor to produce a “dark hole”

e Compared to other “extreme” AO systems (Sphere,
PALM-3K), GPI has:

e computationally efficient wavefront reconstruction and self-optimizing control

e a MEMS deformable mirror

e very high-quality optics

* been designed for near-IR observations with contrast of 107 in one hour on
NGS1<8




GPI has unique DM requirements

e Need thousands of actuators

e More actuators means a better fit to [
atmospheric turbulence 10
’ / ) f\

e Need small form factor ~oN N )

Fitting a phase shape
20

(AU)

Phase

¢ Instrument location and size, plus the cost 7 W\
of other optics, drive us to an actuator pitch 20 VJ \\»/
* Need low power device
e Entire instrument power budget (several o Fitting a phase shape
computers, cyro-coolers, three detectors, o
etc) is 4 kW " FAN /’**\.\
. S ofy o/ \ Pl b
* At the time of our conceptual YN
. £ -10 \\%/ { \ {
design, a DM that met all of VERY
requirements did not exist .aooNfsezosom

Actuator (N=48)

e Controlling it also challenge...
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Matrix-based recon Is expensive

e The slope vector s contains x- and y-slopes for all valid
subapertures in the pupll

® The phase vector ¢ contains all controllable actuators

e \We model the WFS measurement process as

s=Wo

 With the matrix pseudo-inverse E = W™, the reconstruction is
obtained by a matrix-vector multiplication

A

¢ = Es

e Full application of the matrix is ©O(n?), where n is the number
of actuators
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View this as a filtering problem

e Fourier modes are eigenfunctions of LS| systems - for each

mode the filter is simply multiplication by a complex number
Ve lk, ]

> Gy lk, ] #é +>| Q. |k, ]
o[k, 1] —— é}_, [k, I

> GuyF, 1] "? —>{Qyk, ] ?

|
WFS V, [k, 1] Reconstruction

e FFTWs are O(nlgn). That's 50 times more efficient for GPI.

e \Weiner filter is equivalent to MVU matrix methods.
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Fourier Transform Reconstruction

Desired phase
(actuators)

WFS x-slopes
WFS y-slopes

Solve boundary problem

Complex-valued Fourier coefficients




4K deformable mirror developed for GPI

* Microelectromechanical system
(MEMS) mirrors are produced
with silicon semi-conductor
fabrication technigues

® Developed by Boston
Mlcromachines in multi-year
process with CfAO and Gemini

e Two specific advantages for GPI

e small form factor: 400 micron actuator
spacing
e 4096-actuator MEMS dissipates only 4 W

Photograph courtesy of Steven Cornelissen,
Boston Micromachines Corp.
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Characterizing MEMS actuator response

* Single actuators go where
you want and stay there

e essentially no hysteresis: <1 nm
over full > 1 micron stroke range

e excellent temporal stability: < 0.35
nm RMS motion over 40 minutes

e excellent repeatability: go-to
capability with < 1 nm position error

e Actuator stroke is quadratic
function of commanded
voltage

e calibrate each actuator using low-
pass peak height
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For more information on single-actuator tests see:

Morzinski et al, “Characterizing MEMS deformable mirrors for open-loop operation:
high-resolution measurements of thin-plate behavior,” Proc. SPIE 6888, p. 68880S.
Morzinski, et al, “Characterizing the potential of MEMS deformable mirrors for

astronomical adaptive optics,” Proc. SPIE 6272, p. 627221.
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Final MEMS has defects

e Four dead actuators
that are unresponsive
¢ For each, the four

surrounding

subapertures are

numerically masked

e Two pairs of coupled

actuators slightly

underperform, but not

enough so that we

need to do anything
special to control them

16




Mask defects inside APLC

e Phase errors on the scale of one
actuator cause bright spots in
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MEMS and FTR enable “extreme” AO

* More actuators and 1 kHz I=7, eight sec composite
frame rate gets us higher
Strehl

e Dominant error term in
controllable region is due to
aliasing

¢ In classic AQ, aliasing error
has one-third the power of
fitting error

1e-6 PSF intensity 1d4-3
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Wavefront sensors sample the phase

e Signal above Nyquist will not be accurately sampled and
reconstructed

Aliasing of a high-frequency sine wave
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Anti-aliasing filter is a field stop

Phase in pupil plane

Image plane

20




“Dark hole” essential for high performance

e SFWFS attenuates high-
spatial frequency phase
power by 1000 times,
eliminating the aliasing error

e Operation with the spatial
filter reveals the true error
from the uncorrected
atmosphere and WFS noise

Poyneer & Macintosh, “Spatially filtered wave-
front sensor for high-order adaptive optics,” J.
Opt. Soc. Am. A 21, 810-819 (2004).

I=7, eight second composite

1e-6

PSF intensity

1e-3
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Slaving essential to SF stability

* | arge inter-actuator
phase excursions lead
to intensity drop-outs
and slope errors

* Preventing unnecessary
excursions is essential

e The following had to be

slaved for stability

e nearest neighbors of dead
actuators

e the central obscuration

e actuators at pupil edge that
touched only 1 valid subap

22




Optimized-gain Fourier Control

Desired phase
(actuators)

WFS x-slopes
WFS y-slopes

Optimize
gains
(Solve boundary problem )

l l Ipsos \\\

Periodograms

Complex-valued Fourier coefficients




Know control system; measure conditions

e Model and verify control system
behavior using Z- or Laplace
transforms o[t —-»(i)——»ym

e Use wavefront residuals during 7l
operation to estimate signal anad
noise temporal power spectra

* Find best gain by minimizing
error power

argmin /
C(z) —7

For original modal gain optimization concept see Gendron and Léna, “Astronomical adaptive optics I. Modal
control optimization,” Astron. Astrophys. 291, 337-347 (1994).
For the application to Fourier reconstruction see Poyneer and Véran, “Optimal modal Fourier transform wave-front
control,” J. Opt. Soc. Am. A 22, 1515-1526 (2005).

A
Q
o)

1

1 2

1 + exp(—2jw)C(w)

1+ exp(—52w)Co(w)|* Py (w) dw}
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OFC improves performance in dark hole

I=7, eight second composite

* | arge range of gains
required by variations in
atmospheric and WFS
noise power with spatial
frequency

e PSF intensity reduced
nearly everywhere in dark
hole

e System self-optimizes
several times a minute

1e-6 PSF intensity 1e-3
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Woofer-Tweeter control

Tweeter phase

e MEMS does not have adequate stroke

e \Woofer takes atmosphere’s high-power,
low-frequency modes

e Split is done in the Fourier domain

¢ 5.5:1 ratio of actuator spacing

+2pPum

k.
-2 pum A\%‘%?,

Desired phase

Woofer phase

-

Lavinge and Véran, “Woofer-tweeter control in an adaptive optics system using a Fourier reconstructor,” J. Opt. Soc. Am. A 25, 2271-2279 (2008).
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Other tweaks that we’ve had to make

e Use a local waffle suppression filter by reducing the MEMS
influence function pre-compensation for highest spatial
frequencies around waffle

e \Woofer-Tweeter split does not behave well when large

amounts of focus are present in the phase
e manually implement on testbed the offloading to M1/M2 that will occur at Gemini

28




Real-time control processing tasks
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RTC timing - self-report

e All loops closed, optimizer on; times via system clock
e WFS read: 890 usec (fixed read time for camera mode 3 -> max 1.12 kHz)
e Time from end of read to TT write: 220 usec (17% throughput)
e Time from end of read to DM writes: 590 usec
e Time from end of read to all processing done: 750 usec (average)

¢ WFS stare depends on frame rate: this example is 1.0 kHz

A 4

< Gain:optimization process

Integrate M Integrate Integrate

Y
Read out % Read out A Read out
C C

l FTF\’l l FTI-?l

write TT write DMs write TT write DMs
(1.11 fr) (1.48 fr) (1.11 fr) (1.48 fr)
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Experimental setup

* Spinning phase plate
e due to quality problems, could not used the phase plates we were supposed to
e used plate with only one-half the RMS phase error of median seeing
e plate spun to effective 15 m/s wind

e 700-900 light source (filtered white)
e Spatial filtered irised down to designed size when Woofer loop
closes

e NoO science camera yet (IFU delayed) so all performance
analysis done from telemetry of measured residual Fourier
coefficients
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Loop closing sequence

* |nitial control loop gains = 0.1
e Spatial filter open

e Close TT loop

e Close Woofer loop and iris

down spatial filter
e WFS measures 92 nm RMS

e Close Tweeter loop
e WFS measures 45 nm RMS

32




Closer look at Tweeter closing step

e Start Woofer loop closed and

spatial filter irising down
e WFS measures 92 nm RMS

e Tweeter loop then closes
e WFS measures 45 nm RMS

33




Impact of gain optimization

® Bright star case

e Gains 0.1 to start
e WFS measures 45 nm RMS

e OFC cranks up gains to 0.3

for nearly all modes
e WFS measures 24 nm RMS
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Wind & defects visible in error per actuator

e Calculate RMS error per actuator as measured in closed loop
e This example is the bright-star case
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Use temporal PSDs to evaluate loops

¢ \\le have access to the measured Fourier coefficients.

e For each complex-valued Fourier coefficient, estimate the
temporal PSD (just like AOC does for OFC)
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System temporal response matches model

e Estimate ETF as ratio of open/closed loop measurements
e \\e have a detailed Laplace model of system dynamics
» Excellent agreement of model and calibration with measured

data

o
0
on
o
-
o
.2
14

Estimated Error TF, from open/optimized measurements — 2,2 {Wir}

From |=7.2 test case
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High-order modes also well-behaved

o
w
o
o
"
=]
=
14

e Fourier modes being controlled independently
e MEMS influence function filtering is correctly calibrated

Estimated Error TF, from open/optimized measurements — 12,9 (Twt)

From |=7.2 test case
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Dual surface TT control working well

e [T split between two surface with a low-pass filter
e TT Stage has high stroke, but is slow and has low bandwidth
e \Woofer surface (actuators) has low stroke but is faster

Estimated Error TF, from open/closed measurements — Tip

v ﬂ\r‘.{w

g el

From |=7.2 test case
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Gain optimizer working correctly

e Updates gains every 10 seconds
e Converges rapidly to correct modal gains and stays there

¢ Even did the right thing when we accidentally spun the phase plate to make
80 m/s wind!

From simulation of
three-layer
atmosphere with one
dominant wind
direction (different
color table)

Testing with same spinning phase plate
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Lab test performance

Estimated science-leg in-band residual error

(nm), optimized gains, SF closed, 1 kHz
| mag WES noise Temporal
4.5 6.0 14.6
6.0 10.8 23.7
7.2 15.5 46.0
7.7 18.5 66.0
8.0 still testing

e Estimates obtained from “noise only” and “noise + plate” runs
and WFS telemetry using PSD methods
e Temporal error on phase plate with one-half RMS of median ro
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Huge effort by GPI AO team

* | awrence Livermore
(AO design, simulations,
algorithms, and real-

time computer)

¢ Brian Bauman, Steve Jones,
Bruce Macintosh, Dave Palmer
and Lisa Poyneer

e HIA (AO optical bench)
e UC Santa Cruz LAO
(integration)

e Daren Dillon, Don Gavel and
Sandrine Thomas
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